

Deconstructing threat in picture processing: An event-related potential

investigation of sex differences in the motivational relevance of highly aversive

images

Rosemaree Kathleen Miller, BSc(Hons), BA

A thesis submitted in

fulfilment of the requirements

for the degree of

Doctor of Philosophy (Psychology - Science)

University of Newcastle, February 2017

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968.

Rosemaree Kathleen Miller

Date: _____

Acknowledgements

To the many friends, family, technical staff, lab-mates and complete strangers who have supported me on my PhD journey, thank you. My most poignant memories are the small things, from cups of home-made kombucha to random musings on the philosophical implications of psychological research. Every day I feel fortunate to have so many remarkable people in my life.

Danielle, my sister from another mother, thank you for being the kind, thoughtful and all-around fabulous person you are. Deep, thank you for your everpresent smile, snappy dress sense and interesting conversations about, well, everything! And Adam, thank you for being my rock throughout the last three years, I will never ever forget the love and compassion you have shown me during this time. Also, special thanks to Glenys and my Mum for proof-reading the final version of the thesis.

Finally, no words can adequately express the depth of my gratitude towards my PhD supervisor, Frances Martin. Being mentored by you has been, and will continue to be, a privilege I feel unworthy of. Thank you for sharing your seemingly boundless knowledge and expertise with me during my PhD journey, as well as your continuous kindness, patience and support.

Acknowledgements	v
LIST OF TABLES	xi
Experiment 1	xi
Experiment 2	xiii
Experiment 3	xiv
LIST OF FIGURES	xvii
Experiment 1	xvii
Experiment 2	xix
Experiment 3	xxiii
Abstract	xxvii
Chapter 1 - INTRODUCTION	1
Chapter 2 - SEX DIFFERENCES IN THE MOTIVATIONAL RELEVANCE	OF
UNPLEASANT IMAGES	7
The motivational relevance of unpleasant images	8
Brain-based measures of emotional salience	12
Sex-specific variation in N2 activity	13
Sex-specific variation in early ERP activity	18
Sex-specific variation in late-occurring positivity	21
Summary of sex differences in ERP activity for unpleasant images	
Implications for sex differences in defensive motivation	
Chapter 3 -THESIS RATIONALE	
Chapter 4 - EXPERIMENT 1	
Method	42
Results	55
Discussion	115

TABLE OF CONTENTS

Chapter 5 - EXPERIMENT 2
Method
Results
Discussion
Chapter 6 - EXPERIMENT 3
Method
Results
Discussion
Chapter 7 - GENERAL DISCUSSION
Experiment 1: The motivational relevance of attack intent
Experiments 2 and 3: Stimulus congruency, attack intent and arousal level 294
The motivational relevance of human injury
The effect of stress reactivity on sex differences in motivational relevance 299
Implications and conclusions
References
APPENDIX A: General medical questionnaire
APPENDIX B: Analysis of Goldberg marker scores for Experiments 1, 2 and 3347
APPENDIX C: Visual scales used to collect affective ratings during Experiment 1355
APPENDIX D: Initial affective ratings of images selected for Experiments 1 and 2357
APPENDIX E: Analysis of initial affective ratings for Experiments 1 and 2
APPENDIX F: Average ERP waveforms for overall, female and male groupings in
Experiments 1, 2 and 3
APPENDIX G: Linear mixed effects analysis procedure
APPENDIX H: Comparison of null and base models for reaction time and ERP data in
Experiments 1, 2 and 3

APPENDIX I: Estimation of final models for Experiments 1, 2, and 3
APPENDIX J: Descriptive statistics of affective ratings for male and female groupings
in Experiment 1 (M±SE)401
APPENDIX K: Parameter information and inferential statistics for select final models in
Experiments 1, 2 and 3403
APPENDIX L: Initial affective ratings of images selected for Experiment 3

DIGITAL APPENDICES – DISC 1

DIGITAL APPENDIX A. Ethics paperwork

DIGITAL APPENDIX B. Experiment 1 analyses

DIGITAL APPENDIX C. Experiment 2 analyses

DIGITAL APPENDIX D. Experiment 3 analyses

LIST OF TABLES

Table 4.1. Combined oral contraceptives prescribed to 19 women recruited forExperiment 1	4
Table 4.2. Spearman rank correlation coefficients between scores from thePSWQ, the TAS-20, neuroticism and the two subscales of the STAI	5
Table 4.3. Mean scores (± standard error) for PSWQ, TAS-20, neuroticism andthe two STAI subscales, grouped by male and female groupings	5
Table 4.4. Spearman rank correlation coefficients between ratings of valence,arousal, threat and disgust for Experiment 1	5
Table 4.5. Arousal ratings of firearm and reptile images by the male and threefemale groupings in Experiment 1	6
Table 4.6. R notation for the final and breakdown model estimated for N1 mean amplitudes	e
Table 4.7. Fit statistics for the firearm, reptile and human models estimated tobreak down the N1 final model	6
Table 4.8. Parameter information for significant two-way and three-wayinteractions in the N1 firearm model	(
Table 4.9. Parameter information for one two-way and one three-wayinteraction that reached significance in the N1 reptile model	(
Table 4.10. Parameter information for one two-way and one three-wayinteraction that reached significance in the N1 human model	-
Table 4.11. <i>R</i> notation for the final model estimated for EPN mean amplitudes	7
Table 4.12. Parameter information for significant higher-order interactions inthe final model for EPN mean amplitudes	,
Table 4.13. R notation for the final and breakdown model estimated for N2 mean amplitudes	2

Table 4.14. Fit statistics for the firearm, reptile and human models estimated tobreak down the N2 final model	82
Table 4.15. Parameter information for one two-way and one three-way	
interaction that reached significance in the N2 firearm model	82
Table 4.16. Parameter information for one significant three-way interaction inthe N2 reptile model	85
Table 4.17. Parameter information for one two-way and one three-way	
interaction that reached significance in the N2 human model	87
Table 4.18. R notation for the final and breakdown model estimated for P3b mean amplitudes	92
Table 4.19. Fit statistics for the firearm, reptile and human models estimated to	
break down the P3b final model	93
Table 4.20. Parameter information for one two-way and two three-way	
interactions that reached significance in the P3b firearm model	94
Table 4.21. Parameter information for three two-way and one three-way	
interaction that reached significance in the P3b reptile model	97
Table 4.22. Parameter information for two significant two-way interactions in	102
the P3b human model	10
Table 4.23. R notation for the final and breakdown model estimated for LPPmean amplitudes	100
Table 4.24. Fit statistics for the firearm, reptile and human models estimated to	
break down the LPP final model	100
Table 4.25. Parameter information for significant two-way and three-way	
interactions involving Threat level in the LPP firearm model	107
Table 4.26. Parameter information for significant two-way and three-way	
interactions involving Threat level in the LPP reptile model	11(
Table 4.27. Parameter information for significant two-way and three-way	
interactions involving Threat level in the LPP human model	11.

Table 5.1. Combined oral contraceptives prescribed to 16 women recruited forExperiment 2
Table 5.2. Spearman rank correlation coefficients between scores from thePSWQ, the TAS-20, neuroticism and the two subscales of the STAI
Table 5.3. Mean hit-rates for each of the 16 congruency conditions inExperiment 2
Table 5.4. R notation for the final model estimated for reaction timesTable 5.5. Parameter information for significant two-way interactions
involving Threat level and Congruency in the reaction time final model
Table 5.6. R notation for the final model estimated for anterior N1 meanamplitudes
Table 5.7. Parameter information for significant two-way interactionsinvolving Threat level and Congruency in the anterior N1 final model
Table 5.8. Parameter information for significant four-way interactionsinvolving in the anterior N1 final model
Table 5.9. R notation for the final model estimated for occipital N1 mean amplitudes
Table 5.10. Parameter information for significant two-way and three-wayinteractions in the occipital N1 final model
Table 5.11. Parameter information for significant four-way interactions in theoccipital N1 final model
Table 5.12. <i>R</i> notation for the final model estimated for EPN mean amplitudes
Table 5.13. Parameter information for two significant higher-orderinteractions in the EPN final model
Table 5.14. R notation for the final model estimated for MPN mean amplitudes.
Table 5.15. Parameter information for significant two-way and three-way
interactions in the MPN final model

Table 5.16. R notation for the final and breakdown model estimated for LPPmean amplitudes	176
Table 5.17. Fit statistics for the breakdown models for the high STAI-T and lowSTAI-T groupings estimated for LPP mean amplitudes	177
Table 5.18. Parameter information for significant two-way and three-way interactions in the breakdown model for the high STAI-T grouping in LPP	
mean amplitudes	178
Table 5.19. Parameter information for significant two-way interactions in thebreakdown model for the low STAI-T grouping in LPP mean amplitudes	183
Table 5.20. Parameter information for significant three-way interactions in thebreakdown model for the low STAI-T grouping in LPP mean amplitudes	184
Table 5.21. R notation for the final model estimated for CRN mean amplitudes.	192
Table 5.22. Parameter information for significant four-way interactions in theCRN final model	193

Table 6.1. Combined oral contraceptives prescribed to 18 women recruited for	
Experiment 3	212
Table 6.2. Spearman rank correlation coefficients between scores from the	
PSWQ, the TAS-20, neuroticism and the two subscales of the STAI	220
Table 6.3. Mean hit-rates for each of the 16 congruency conditions in	
Experiment 3	221
Table 6.4. R notation for the final and breakdown model estimated for reaction	
times	223
Table 6.5. Pairwise contrasts between the levels of Congruency for high and	
low arousal distractors in reaction times, categorised by participant sex	226
Table 6.6. R notation for the final model estimated for anterior N1 mean	
amplitudes	230

Table 6.7. Parameter information for significant two-way interactions qualified	
by higher order interactions in the anterior N1 breakdown model for females	231
Table 6.8. Parameter information for significant three-way interactions in theanterior N1 breakdown model for females	232
Table 6.9. R notation for the final model estimated for occipital N1 mean amplitudes	241
Table 6.10. Parameter information for LS differences between high and lowarousal distractors in occipital N1 mean amplitudes	243
Table 6.11. R notation for the final model estimated for EPN mean amplitudes	249
Table 6.12. Parameter information for significant two-way interactionsqualified by significant three-way interactions in the EPN breakdown modelfor the high STAI-S grouping	250
Table 6.13. Parameter information for significant two-way interactionsqualified by a significant three-way interaction in the EPN breakdown modelfor the low STAI-S grouping	253
Table 6.14. R notation for the final model estimated for MPN mean amplitudes.	258
Table 6.15. Parameter information for significant two-way and three-wayinteractions qualified by the significant four-way interaction in the final modelfor MPN mean amplitudes	258
Table 6.16. <i>R</i> notation for the final model estimated for LPP mean amplitudes	264
Table 6.17. Parameter information for significant two-way interactionsqualified by higher-order interactions in the final model for LPP meanamplitudes	264
Table 6.18. Parameter information for five significant three-way interactions inthe final model for LPP mean amplitudes	267
Table 6.19. Parameter information for LS differences between levels ofCongruency for active and passive distractors in LPP mean amplitudes,	
categorised by participant sex	268

Table 6.20. Parameter information for LS differences between the levels of	
Congruency for high and low arousal distractors in LPP mean amplitudes,	
categorised by participant sex	270
Table 6.21. R notation for the final and breakdown models estimated for CRN	
mean amplitudes	277
Table 6.22. Parameter information for significant two-way and three-way	
interactions qualified by the significant four-way interaction in the CRN	
breakdown model for females	278
Table 6.23. Parameter information for significant two-way interactions in the	
CRN breakdown model for males	281

LIST OF FIGURES

<i>Figure 2.1.</i> A theoretical representation of the defence cascade from Bradley,	
Codispoti, Cuthbert, et al. (2001)	11

Figure 4.1. Examples of firearm, reptile and human images presented during	
the passive viewing task. Shown images are sourced from the Internet	48
Figure 4.2. The trial procedures for block one, two and three showing the	
timings of each stage of the passive viewing task	51
<i>Figure 4.3</i> . Average ratings of valence, arousal, threat and disgust for firearm, reptile and human stimuli	60
Figure 4.4. Approximate locations of ERP activity elicited by the passive	
viewing task on a 64-channel Neuroscan Quik-cap	61
Figure 4.5. Grand average N1 waveforms for males (top) and birth control	
females (bottom), averaged across frontal-central and central electrodes close	
to the midline	63
Figure 4.6. Grand average N1 waveforms for follicular phase (top) and luteal	
phase (bottom) females, averaged across frontal-central and central electrodes	
close to the midline	64
Figure 4.7. LS means for N1 mean amplitudes in the firearm model categorised	
by threat level and participant sex ($M_{\text{STAI-S}} = 33.03$)	68
Figure 4.8. LS means for N1 mean amplitudes in the reptile model categorised	
by threat level and participant sex ($M_{\text{STAI-S}} = 33.03$)	70
Figure 4.9. LS means for N1 mean amplitudes in the human model categorised	
by threat level and participant sex ($M_{\text{STAI-S}} = 33.03$)	72
Figure 4.10. Grand average EPN waveforms for birth control females (top) and	
males (bottom), averaged across the most lateral parietal and parietal-occipital	
electrodes	74

Figure 4.11. Grand average EPN waveforms for follicular phase (top) and	
luteal phase (bottom) females, averaged across the most lateral parietal and parietal-occipital electrodes	75
<i>Figure 4.12.</i> LS means for EPN mean amplitudes categorised by stimulus type, threat level and coronal site	78
<i>Figure 4.13</i> . Grand average N2 waveforms for birth control females (top) and males (bottom), averaged across central and central-parietal electrodes close to the midline.	79
<i>Figure 4.14</i> . Grand average N2 waveforms for follicular phase (top) and luteal phase (bottom) females, averaged across central and central-parietal electrodes close to the midline	80
<i>Figure 4.15.</i> LS means for N2 mean amplitudes in the firearm model, categorised by threat level and participant sex ($M_{\text{NEUR}} = 33.31$)	83
<i>Figure 4.16.</i> LS means for N2 mean amplitudes in the reptile model, categorised by threat level and participant sex ($M_{\text{NEUR}} = 33.31$)	86
<i>Figure 4.17.</i> LS means for N2 mean amplitudes in the human model, categorised by threat level and participant sex ($M_{\text{NEUR}} = 33.31$)	88
<i>Figure 4.18.</i> Grand average P3b waveforms for birth control females (top) and males (bottom), averaged across parietal and parietal-occipital electrodes close to the midline	89
<i>Figure 4.19.</i> Grand average P3b waveforms for follicular phase (top) and luteal phase (bottom) females, averaged across parietal and parietal-occipital electrodes close to the midline	90
<i>Figure 4.20.</i> LS means for P3b mean amplitudes in the firearm model, categorised by threat level and participant sex ($M_{PSWQ} = 46.43$)	95
<i>Figure 4.21</i> . LS means for P3b mean amplitudes in the firearm model, categorised by threat level and coronal site	96
<i>Figure 4.22.</i> LS means for P3b mean amplitudes in the reptile model, categorised by threat level and participant sex ($M_{PSWQ} = 46.43$)	98

Figure 4.23. LS means for P3b mean amplitudes in the reptile model,	
categorised by threat level and sagittal location	99
Figure 4.24. LS means for P3b mean amplitudes in the reptile model,	
categorised by threat level and coronal site	100
Figure 4.25. LS means for P3b mean amplitudes in the human model,	
categorised by threat level and sagittal location	101
Figure 4.26. LS means for P3b mean amplitudes in the human model,	
categorised by threat level and coronal site	102
Figure 4.27. Grand average P3b waveforms for birth control females (top) and	
males (bottom), averaged across central and central-parietal electrodes close to	
the midline	104
Figure 4.28. Grand average LPP waveforms for follicular phase (top) and	
luteal phase (bottom) females, averaged across central-parietal and parietal	
electrodes close to the midline	105
Figure 4.29. LS means for LPP mean amplitudes in the firearm model,	
categorised by threat level and participant sex ($M_{\text{STAI-T}} = 38.9$)	108
Figure 4.30. LS means for LPP mean amplitudes in the reptile model,	
categorised by threat level and participant sex ($M_{\text{STAI-T}} = 38.9, M_{\text{PSWQ}} = 46.43$)	111
Figure 4.31. LS means for LPP mean amplitudes in the human model,	
categorised by threat level and participant sex ($M_{\text{STAI-T}} = 38.9, M_{\text{PSWQ}} = 46.43$)	114

<i>Figure 5.1.</i> Examples of aimed handgun, water pistol, snake and turtle images	
selected to construct arrays for the modified Flanker task	127
Figure 5.2. Symbol representation of 16 congruency conditions for firearm	
(top) and reptile (bottom) stimuli	128
Figure 5.3. Sequence of trials within the modified Flanker task	128

Figure 5.4. Descriptive means for reaction times categorised by Flanker	
congruency for firearm (left) and reptile (right) distractors	136
Figure 5.5. LS means for reaction times categorised by congruency and	
participant sex ($M_{\text{NEUR}} = 35.24, M_{\text{TAS-}20} = 48.15$)	139
<i>Figure 5.6.</i> LS means for reaction times to congruent and incongruent arrays, categorised by stimulus type and threat level	140
<i>Figure 5.7.</i> Approximate locations of ERP activity elicited by the modified Flanker task on a 64-channel Neuroscan Quik-cap	141
<i>Figure 5.8.</i> Grand average anterior N1 waveforms averaged across frontal- central and central electrodes for females	143
<i>Figure 5.9.</i> Grand average anterior N1 waveforms averaged across frontal- central and central electrodes for males	144
<i>Figure 5.10.</i> LS means for anterior N1 mean amplitudes categorised by stimulus type and sagittal location	148
<i>Figure 5.11</i> . LS means for anterior N1 mean amplitudes categorised by stimulus type, threat level and participant sex	149
<i>Figure 5.12.</i> LS means for anterior N1 mean amplitudes categorised by stimulus type, congruency and participant sex ($M_{\text{STAI-T}} = 40.12$)	150
<i>Figure 5.13.</i> LS means for anterior N1 mean amplitudes categorised by threat level, congruency and participant sex ($M_{\text{STAI-T}} = 40.12$)	150
<i>Figure 5.14.</i> LS means for anterior N1 mean amplitudes elicited by congruent and incongruent arrays, categorised by stimulus type and threat level ($M_{\text{STAI-T}} = 40.12$)	151
Figure 5.15. Grand average occipital N1 waveforms averaged across frontal-	
central and central electrodes for females (top) and males (bottom)	153
Figure 5.16. LS means for occipital N1 mean amplitudes categorised by	
stimulus type, congruency and sagittal location ($M_{\text{NEUR}} = 37.03$)	157

Figure 5.17. LS means for occipital N1 mean amplitudes categorised by	
stimulus type, congruency and participant sex ($M_{\text{NEUR}} = 37.03$)	158
Figure 5.18. LS means for occipital N1 mean amplitudes categorised by threat	
level, congruency and participant sex ($M_{\text{NEUR}} = 37.03$)	159
Figure 5.19. LS means for occipital N1 mean amplitudes elicited by congruent	
and incongruent arrays, categorised by stimulus type and threat level ($M_{\text{NEUR}} =$	1.60
37.03)	160
<i>Figure 5.20.</i> Grand average EPN waveforms averaged across the most lateral	
parietal and parietal-occipital electrodes for females	161
Figure 5.21 Grand average EPN waveforms averaged across the most lateral	
parietal and parietal-occipital electrodes for males	162
Figure 5.22. LS means for EPN mean amplitudes elicited by congruent and	
incongruent arrays, categorised by stimulus type and threat level	165
Figure 5.23. LS means for EPN mean amplitudes categorised by stimulus type,	
congruency and participant sex ($M_{\text{NEUR}} = 37.03$)	166
Figure 5.24. Grand average MPN waveforms averaged across the most lateral	
temporal-parietal and parietal electrodes for females	168
Figure 5.25. Grand average MPN waveforms averaged across the most lateral	
temporal-parietal and parietal electrodes for males	169
Figure 5.26. LS means for MPN mean amplitudes categorised by stimulus type	
and congruency.	171
Figure 5.27. LS means for MPN mean amplitudes categorised by threat level,	
congruency and coronal site	172
Figure 5.28. Grand average LPP waveforms averaged across central-parietal	
and parietal electrodes close to the midline for females	174
Figure 5.29. Grand average LPP waveforms averaged across central-parietal	
and parietal electrodes close to the midline for males	175

<i>Figure 5.30.</i> LS means for LPP mean amplitudes in the high STAI-T grouping, categorised by congruency and participant sex ($M_{PSWQ} = 51.71$)	179
<i>Figure 5.31</i> . LS means for LPP mean amplitudes in the high STAI-T grouping elicited by congruent and incongruent arrays, categorised by stimulus type and threat level	180
<i>Figure 5.32.</i> LS means for LPP mean amplitudes in the high STAI-T grouping, categorised by threat level and participant sex ($M_{PSWQ} = 51.71$)	182
<i>Figure 5.33.</i> LS means for LPP mean amplitudes in the low STAI-T grouping, categorised by congruency and participant sex ($M_{PSWQ} = 40.7$)	185
<i>Figure 5.34.</i> LS means for LPP mean amplitudes in the low STAI-T grouping, categorised by threat level and participant sex ($M_{PSWQ} = 40.7$)	185
<i>Figure 5.35.</i> LS means for LPP mean amplitudes in the low STAI-T grouping categorised by threat level and congruency ($M_{PSWQ} = 40.7$)	186
<i>Figure 5.36.</i> LS means for LPP mean amplitudes in the low STAI-T grouping, elicited by congruent and incongruent arrays, categorised by stimulus type and threat level	188
<i>Figure 5.37.</i> Grand average response-locked waveforms for the CRN averaged across frontal and frontal-central electrodes for females	190
<i>Figure 5.38.</i> Grand average response-locked waveforms for the CRN averaged across frontal and frontal-central electrodes for males	191
<i>Figure 5.39.</i> LS means for CRN mean amplitudes categorised by stimulus type, threat level and participant sex ($M_{\text{STAI-T}} = 40.12$)	194
<i>Figure 5.40.</i> LS means for CRN mean amplitudes categorised by congruency, participant sex and coronal site ($M_{\text{STAI-T}} = 40.12$)	195
<i>Figure 5.41</i> . LS means for CRN mean amplitudes categorised by stimulus type, congruency and participant sex ($M_{\text{STAI-T}} = 40.12$)	196

Figure 5.42. LS means for CRN mean amplitudes elicited by congruent and	
incongruent arrays, categorised by stimulus type and threat level ($M_{\text{STAI-T}} =$	
40.12)	198
Figure 5.43. LS means for CRN mean amplitudes categorised by stimulus type,	
threat level, congruency and participant sex	199

Figure 6.1. Examples of high and low-arousing images selected for active and	
passive image categories to construct arrays for the modified Flanker task	214
Figure 6.2. Average ratings of valence, arousal, threat and disgust for 40	
human images, categorised by threat type and arousal level	214
Figure 6.3. Symbol representation of 16 congruency conditions for active (top,	
aimed handguns, unarmed men) and passive (bottom, severe injury, sleeping	
men) image distractors	215
Figure 6.4. Descriptive means for reaction times categorised by Flanker	
congruency for active (left) and passive (right) distractor images	223
Figure 6.5. LS means for reaction times categorised by arousal level, threat	
type and congruency	224
Figure 6.6. LS means for reaction times categorised by arousal level,	
congruency and participant sex	226
Figure 6.7. Grand average anterior N1 waveforms averaged across frontal-	
central and central electrodes for females	228
Figure 6.8. Grand average anterior N1 waveforms averaged across frontal-	
central and central electrodes for males	229
Figure 6.9. LS means for anterior N1 mean amplitudes categorised by arousal	
level, threat type and congruency for females ($M_{\text{STAI-S}} = 31.2$)	233
Figure 6.10. LS means for anterior N1 mean amplitudes categorised by arousal	
level, threat type, congruency and sagittal location for females	235

<i>Figure 6.11</i> . LS means for anterior N1 mean amplitudes categorised by arousal level, threat type and congruency for males	227
level, threat type and congruency for males	237
<i>Figure 6.12.</i> LS means for anterior N1 mean amplitudes categorised by stimulus type, threat type and participant sex	239
<i>Figure 6.13</i> . Grand average waveforms showing the occipital N1 averaged across the parietal-occipital and occipital midline electrodes for females (top)	
and males (bottom)	240
<i>Figure 6.14.</i> LS means for occipital N1 mean amplitudes categorised by arousal level, threat type and congruency ($M_{\text{NEUR}} = 32.41$)	243
<i>Figure 6.15</i> . LS means for occipital N1 mean amplitudes categorised by arousal level, threat type, congruency and sagittal location	245
<i>Figure 6.16.</i> Grand average EPN waveforms averaged across the most lateral parietal and parietal-occipital electrodes for females	246
<i>Figure 6.17</i> . Grand average EPN waveforms averaged across the most lateral parietal and parietal-occipital electrodes for males	247
<i>Figure 6.18.</i> LS means for EPN mean amplitudes categorised by threat type, congruency and coronal site for the high STAI-S grouping	251
<i>Figure 6.19.</i> LS means for EPN mean amplitudes categorised by arousal level, threat type and congruency for the high STAI-S grouping	252
<i>Figure 6.20.</i> LS means for EPN mean amplitudes categorised by arousal level, threat type and congruency for the low STAI-S grouping	254
<i>Figure 6.21</i> Grand average MPN waveforms averaged across the most lateral temporal-parietal and parietal electrodes for females	256
<i>Figure 6.22</i> . Grand average MPN waveforms averaged across the most lateral temporal-parietal and parietal electrodes for males	257
<i>Figure 6.23</i> . LS means for MPN mean amplitudes categorised by arousal level, threat type, congruency and sagittal location	260

Figure 6.24. Parameter estimates for LS differences in MPN mean amplitudes	
in the four-way interaction between arousal level, threat type, congruency and	
sagittal location	260
Figure 6.25. Grand average LPP waveforms averaged across central-parietal	
and parietal electrodes close to the midline for females	262
Figure 6.26. Grand average LPP waveforms averaged across central-parietal	
and parietal electrodes close to the midline for males	263
Figure 6.27. LS means for LPP mean amplitudes categorised by arousal level	
and coronal site (top) and by congruency and coronal site (bottom)	266
Figure 6.28. LS means for LPP mean amplitudes categorised by threat type,	
congruency and participant sex	268
Figure 6.29. LS means for LPP mean amplitudes categorised by arousal level,	
congruency and participant sex	269
Figure 6.30. LS means for LPP mean amplitudes categorised by arousal level,	
congruency and sagittal location	271
Figure 6.31. LS means for LPP mean amplitudes categorised by arousal level	
and threat type ($M_{\text{STAI-T}} = 38.26$)	272
Figure 6.32. LS means for LPP mean amplitudes categorised by arousal level,	
threat type and congruency	273
Figure 6.33. Grand average response-locked waveforms for the CRN averaged	
across frontal and frontal-central electrodes for females	274
Figure 6.34. Grand average response-locked waveforms for the CRN averaged	
across frontal and frontal-central electrodes for males	275
Figure 6.35. LS means for CRN mean amplitudes categorised by arousal level,	
threat type and congruency for females ($M_{\text{STAI-S}} = 31.2$)	279
Figure 6.36. LS means for CRN mean amplitudes categorised by congruency	
and coronal site (top), and by arousal level and coronal site (bottom), for males	282

Figure 6.37. LS means for CRN mean amplitudes categorised by threat type	
and congruency for males ($M_{\text{STAI-S}} = 28.93$)	283
Figure 6.38. LS means for CRN mean amplitudes categorised by arousal level	
and threat type for males ($M_{\text{STAI-S}} = 28.93$)	284
Figure 6.39. LS means for CRN mean amplitudes categorised by arousal level,	
threat type and congruency for males	285

Abstract

Motivational relevance refers to an individual's capacity to prioritise attention allocation towards stimuli with high emotional salience. Sex differences in cognition, perception and behaviour suggest that the motivational relevance of negative stimuli is different for men and women. The evidence is mixed for this form of sexual dimorphism, however, as men and women are also known to vary in their vulnerability to stress-eliciting stimuli, or stress reactivity. This association between stress reactivity and an individual's biological sex may be affected by the specific features of a stimulus which denote threat to an individual. The strength of this relationship in emotional processing has previously been assessed with the use of unpleasant images as negative stimuli in several studies utilising electroencephalography (EEG) measures. The premise that the threat value of aversive images, particularly salient forms of negative stimuli, drives sex-specific variation in event-related potential (ERP) activity was examined across three EEG studies in the present research. Threat value, in this context, refers to the interaction between the stimulus- and individual-level factors that drive attention allocation towards threatening stimuli. In Experiment 1 this was investigated through the selection of specific semantic categories in images shown to participants (i.e., reptiles, firearms, humans) and the measurement of personality traits associated with stress reactivity in men and women (i.e., alexithymia, neuroticism, trait anxiety and worry). The influence of the female ovarian cycle on stress reactivity was also addressed by recruiting women prescribed contraceptive medication for all three EEG studies. In line with predictions, sex differences in stimulus-locked ERP amplitude were moderated by the threat value of images showing snakes, handguns or human injury. The effect of context on responses towards the threat value of aversive stimuli was

targeted in Experiments 2 and 3. Differences between men and women in motivational relevance may depend on the deployment of sex-specific strategies in response to stimuli which represent threats to male or female individuals. This was tested using a modified Flanker paradigm which featured congruent and incongruent arrays constructed from images sourced from specific stimulus categories (i.e., reptiles, firearms, humans), as well as the measurement of the same stress-related personality traits assessed in Experiment 1. Sex differences, and similarities, in response selection were indexed by stimulus-locked ERP activity modulated by reptile and firearm stimuli in Experiment 2, and human stimuli in Experiment 3. Across all three EEG studies levels of neuroticism, trait anxiety and worry contributed to sex-specific variation in ERP activity across the picture processing stream, supporting the notion that differences between male and female individuals in motivational relevance are influenced by both individual- and stimulus-level factors. Moreover, the results of the present research demonstrate that threat value must be considered when investigating the emotional salience of negative stimuli, and that sources of individual variation, such as sex differences, represent a rich avenue of inquiry for psychological research. Furthermore, the present research findings also have implications for the way in which stress reactivity is examined in men and women, particularly in regards to the types of psychopathology associated with being male or female.